Explicit Maths Instruction in the Primary Classroom

MULTIPLICATION FACTS $-\times 3$		
$4 \times 3=12$	$6 \times 3=18$	$8 \times 3=24$
$7 \times 3=21$	$2 \times 3=6$	$10 \times 3=30$
$3 \times 3=9$	$9 \times 3=27$	$1 \times 3=3$
$5 \times 3=15$		
$29 \times 3=87$	$3 \times 30=90$	$300 \times 30=9000$
$999 \times 3=2,997$	$97 \times 43=4,171$	$2,553 \times 3=7,659$

@DaveMorkunas

 Bentleigh West Primary School
Session Outline

- About me
- Bentleigh West Primary School background and journey
- Low Variance Curriculum
- Timetable overview
- Standard algorithms for the four operations
- Problem solving and worded problems: CUBES and bar model
- A typical mathematics lesson in Grade 4
- Problem solving
- Daily reviews in Mathematics
- Q\&A

About Me

- Worked as a financial auditor for PwC
- Chose to study teaching at 27
- Applied to ~70 schools, eventually landed at BWPS
- Particular passion for teaching maths and the role that memory
plays in learning
- Huge nerd

Bentleigh West Primary School

- Previously considered a "coasting" school
- Began moving towards evidence-based instruction in late 2015
- Schools teach biologically secondary knowledge
- Explicit Direct Instruction (EDI)
- Links well to Rosenshine's Principles of Instruction
- Checking for Understanding, Obtaining a High Success Rate, Daily Review
- Aligns to HITS (Multiple Exposures, Questioning)
- Definition of learning: change in long-term memory
- Kirschner, Sweller, and Clark
- Multiple exposures required to facilitate this

A Caveat...

Student Outcomes

2022 NAPLAN

Grade 3 Numeracy: 485
Grade 5 Numeracy: 556
66\% of Grade 5 students achieved scores in the top 2 bands
4\% of Grade 5 students scored in the bottom 2 bands

Low Variance Curriculum

- Developed at the end of the 2017 school year; rolled out first in 2018
- Allows teachers to focus on how to teach, not what to teach
- Minimises variance in instruction

Week	Number and Algebra	Number and Algebra	Statistics and Probability OR Measurement and Geometry	Worded Problems/Problem Solving
T1W1	Read (review) and order numbers to 5 digits (worksheet/presentation practice) Order 5-digit numbers in ascending and descending order	Greater than, less than Compare values using greater than and less than symbol.	Li: read analogue clocks to the nearest second	No Lesson
T1W2	Li: read and model 6 digits numbers and their place value	Ll: order 6-digit numbers in ascending and descending order.	Ll: convert between 12 and 24 hour time	Review Part/Part/Whole bar model (subtraction and addition). Use flow chart.
T1W3	Ll: solve 5 -digit addition problems with renaming using the vertical algorithm	LI: order 6-digit numbers on number lines	LI: select appropriate units to measure capacity	Review Part/Part/Whole bar model (multiplication and division). Use flow chart.
T1W4	Ll: solve 5-digit subtraction problems with renaming using the vertical algorithm	LI: solve 2×2 digit multiplication using the area method.	LI: convert between units of measurement using place value (mass).	3/4 Maths Model Drawing 2.11 Example Ben has twice as many stickers as Jim. Ken has 65 more stickers than Ben. The three boys have 945 stickers altogether. How many stickers does Ken have? https://voutu.be/iaCH4R1i7ew SBM Unit A - Lesson 1
T1W5	Ll: Solve 5-digit subtraction problems with internal zeroes	LI: solve 2×2-digit multiplication problems using the vertical algorithm Needs to be a 2×1-digit lesson next year	Select appropriate units of length Convert between units of measurement using place value (length).	3/4 Maths Model Drawing 2.12 Example Ben has twice as many stickers as Jim. Ken has 85 fewer stickers than Ben. The three boys have 945 stickers altogether. How many stickers does Ken have? https://voutu.be/gmga4VsGFUs SBM Unit A - Lesson 2

Timetable

90 mins of Mathematics daily

Maths Review (30 mins)

- wide selection of previously-taught material
- used principles of spaced, interleaved, and retrieval practice
- PPT used from Monday to Thursday, independent maths quiz on Friday

New Waves Mental Maths (15 mins)

- From Monday to Wednesday this is teacher-modelled
- On Thursday and Friday, students complete independently

Maths Lesson (45 mins)

- New content (as per LVC)
- Monday and Wednesday: Number \& Algebra
- Tuesday: Problem Solving (bar model)
- Thursday: Measurement \& Geometry or Statistics \& Probability
- Friday: Reteach

Timetable

Monday	Tuesday	Wednesday	Thursday	Friday
Maths Review PPT 30 mins	Independent Maths Quiz 30 mins			
New Waves Mental Maths Teacher-led, 15 mins	New Waves Mental Maths Teacher-led, 15 mins	New Waves Mental Maths Teacher-led, 15 mins	New Waves Mental Maths Independent, 15 mins	New Waves Mental Maths Independent, 15 mins
New Lesson Number \& Algebra 45 mins	New Lesson Problem Solving 45 mins	New Lesson Number \& Algebra 45 mins	New Lesson M\&G or S\&P 45 mins	Reteach 45 mins

Standard algorithms for the four operations

- Booker text and Dr. Stephen Norton videos
- Provide a scaffold for students
- Place value language is heavily embedded
- Requires students to have experience with renaming
- Scalable; can still be used to solve complex problems

VERTICAL ADDITION WITH RENAMING

With renaming:
Always start with the place furthest to the right.

自 "a
"Rename as 1 temodrech,eG.tens."
11
356
Write the terress im thherternescoddunmmn.
Write the temsdirettseitethed daladreds column.
Move to the tembdreds.
The answer is 702.

VERTICAL SUBTRACTION ALGORITHM

With renaming:

Always start with the place furthest to the right.

71215
"MLes, RERNAME!"

"Yes, DO IT!"
"12 ternestrakeamaxy 4 tenesecquiadd 88 emse's."

- 347

Subtract the temsdreds.

488

VERTICAL MULTIPLICATION ALGORITHM

2 by 2 digit:
We start with the bottom-right digit.
Step 3: Multiply the ternes Hoytthreameess.

"Rename as 1 herm,drechess $s 4$ "tens."
Step 4: Multiply the toreshoy thite tienss.

"Add 2 hemequeddsequaten 14 " hundreds."
Add the twonumbers to get our final answer.
Add our big tat zero.
Our answer is 1548.

41
36

108

 + 14401548

LONG DIVISION

Step 1 - Divide
"Can 9 tens be shared among 4?"
"Yes."
"How many would each share receive?"
2 tens. Put this 2 in your answer.
Step 2 - Multiply
"How many tens have been shared out?"
$2 \times 4=8$
Step 3 - Subtract
"How many tens are left?"
$9-8=1$
Step 4 - Drag Down

Repeat these four steps until you have arrived at your answer.

Problem Solving

- CUBES and Singapore Bar Model approach
- Framework to deconstruct questions
- Useful scaffold for those with reading difficulties
- Worked examples

CUBES

Circle the key numbers,

Underline the question,
Box any maths action words,
Evaluate and draw,
Solve and check.
Adam had(3)ants. Bec had(5)ants. How many ants did they have in total?
$3+5=8$

We use CUBES to solve worded problems.
Joe's meal cost \$16.64. Mindy's meal cost \$24.17. Daniel's meal cost \$43.15. What was the totaldcost of the three meals?

Circle the key numbers, Underline the question, Box any maths action words, Evaluate and draw, Solve and check.

We have the parts, now we need to calculate the whole. 111 \$ 16.64 \$ 24.17

+ \$ 43.15
$\$ 83.96$
The meal cost \$83.96 in total.

Worked Example

Jug A contained three times as much olive oil as Jug B. Jug C contained 25 mL less olive oil than Jug A. If the three jugs contained a total of 213 mL of olive oil, how much did Jug C contain?

Your Turn

Box A contained three times as much sugar as Box B. Box C contained 26 g less sugar than Box A. If the three boxes contained a total of 184 g of sugar, how much did Box C contain?

7 equal parts equal 238 mL .

Step 2: Calculate the value of 1 equal part.

		34
Step 3:	Calculate Jug C's total.	$\times 3$
		102
Step 4:	Subtract the 25 mL extra to get the total.	102
		25
ug C	ontained 77mL of olive	77

Step 1:
 Step

Add the "fewer" onto the total.

Step 2:

Calculate the value of 1 equal part.

Step 3:

Calculate Box C's total.

Step 4: Subtract the 26 g extra to get our answer.
Box C contained 64 g of sugar.

30

90

- $\quad 26$

GRADE 4 - NUMBER \& ALGEBRA

LEARNING INTENTION:

Use short division to solve problems with remainders

Solve these questions on your whiteboard.

You learned the long division algorithm a couple of weeks ago. Today we will cover the short division algorithm, which is a quicker way of solving these problems.

This is how we set up a division question.
This is our answer. It is called the quotient.

This is the divisor. It is the number that we are dividing our dividend by.

This is the dividend. It's the starting number that we want to divide.

I am trying to solve $89 \div 7$.
Is my question set up correctly? Finish these stems on your whiteboards.

$8 9 \longdiv { 7 }$

This setup is ixcroectedindecaersteltemeadisedend and divisor are in the wrong positions.

This setup is iocroemedin, cortritctabutte.fixed by swapping the dividend and the divisor.

This setup is increaddinsortededao. fix it before I begin solving.

Here is how the question should look:

Short division is very similar to long division.
The main difference is that we do some of the steps in our heads.

259 r 2 Can we share 7 hundreds among 3?
 YES, DO IT!
 How many hundreds will each share receive? 2
 How many hundreds remain? 1

 How many tens remain? 2
 Can we share 29 ones among 3 ?
 YES, DO IT!
 How many ones will each share receive?
 9
 How many ones remain? $\mathbf{2}$

Short division is very similar to long division.
The main difference is that we do some of the steps in our heads.

47 r3

 Can we share 2 hundreds among 5 ?
 Can we share 23 tens among 5?
 How many tens will each share receive?
 How many tens remain?
 Can we share 38 ones among 5?
 How many ones will each share receive?
 How many ones remain?
 NO, RENAME!
 YES, DO IT!
 4
 3
 YES, DO IT!
 7
 3

Short division is very similar to long division.
The main difference is that we do some of the steps in our heads.

$4 \longdiv { 2 2 8 4 r 3 }$

Can we share 9 thousands among 4? YES, DO IT!How many thousands will each share receive?2
How many thousands remain? 1
Can we share 11 hundreds among 4? YES, DO IT!
How many hundreds will each share receive? 2
How many hundreds remain? 3
Can we share 33 tens among 4 ? YES, DO IT!
How many tens will each share receive? 8
How many tens remain? 1
Can we share 19 ones among 4? YES, DO IT!
How many ones will each share receive? 4
How many ones remain? 3

Solve the following questions on your whiteboard.
a) $33 \div 2$
b) $619 \div 4$
$2 \longdiv { 3 ^ { 1 } 3 }$
$4 \longdiv { 6 ^ { 2 } 1 ^ { 1 } 9 }$
c) $6523 \div 7$
$\frac{931 r 6}{5^{2} 2^{1} 3}$
d) $32687 \div 13$

2514 r 3
$1 3 \longdiv { 3 2 ^ { 6 } 6 ^ { 1 } 8 ^ { 5 } 7 }$

So why are we learning this?

- Short division is a much quicker algorithm to use when compared with long division. Getting comfortable with this will save a lot of time when solving division problems!

Solve the following questions on your whiteboard.

$$
\text { a) } \begin{gathered}
57 \div 4 \\
14 \mathrm{r} 1 \\
4 \longdiv { 5 ^ { 1 } 7 }
\end{gathered}
$$

b) $871 \div 5$
 $5 \longdiv { 8 ^ { 3 } 7 ^ { 2 } 1 }$

a) $31 \div 2$
b) $74 \div 5$ c) $73 \div 3$
d) $573 \div 4$
e) $738 \div 5$ $2 \longdiv { 1 5 r 1 } \quad \frac { 1 4 r 4 } { 3 ^ { 1 } 1 } \quad 5 \longdiv { 2 4 r 1 } \quad 4 \longdiv { 7 ^ { 2 } 4 } \quad 3 \longdiv { 7 ^ { 1 } 3 } \quad 4 \longdiv { 5 ^ { 1 } 7 ^ { 2 } 3 } \quad 5 \longdiv { 1 4 7 r 3 }$
f) $754 \div 3$
g) $812 \div 7$
h) $9354 \div 8$
i) $5371 \div 6$
$3 \longdiv { 2 5 1 r 1 }$

$8 \longdiv { 9 ^ { 1 } 3 ^ { 5 } 5 ^ { 7 } 4 }$ $6 \longdiv { 5 3 ^ { 5 } 7 ^ { 3 } 1 }$
j)* $\begin{array}{r}37849 \div 12 \\ \quad 3154 \mathrm{r} 1 \\ 1 2 \longdiv { 3 7 ^ { 1 1 } 8 ^ { 6 } 4 ^ { 4 } 9 }\end{array}$.
k)* $75899 \div 14$
I)* $819057 \div 23$
m) ${ }^{*} 657984 \div 41$
n)* $917702 \div 64$
o)* $8499657 \div 75$
p)* $999888777 \div 137$
$6 4 \longdiv { \underbrace { 9 } 1 ^ { 1 ^ { 2 } 7 7 ^ { 2 1 } 7 ^ { 2 5 } 0 ^ { 5 9 } 2 } }$
$7 5 \longdiv { 8 4 ^ { 9 } 9 ^ { 2 4 } 9 ^ { 2 4 } 6 ^ { 2 2 } 5 ^ { 2 5 5 } }$

Daily Reviews

- Teaching a skill/concept once doesn't lead to mastery
- Regular review/multiple exposures help transfer knowledge to long-term memory
- Heavily supported by research
- Mini whiteboards
- Fast pace
- Great opportunity for formative assessment

UNITS OF MEASUREMENT

kilometres

2D SHAPES

scalene triangle

UNITS OF TIME

minutes in
 an hour

COMPASS DIRECTIONS

Northeast NE

MEASUREMENT CONVERSIONS

Sides on a pentagon?

3D SOLIDS

dodecahedron

UNITS OF TIME

years in a millenium

Month after February? March

MULTIPLICATION FACTS - x8

$$
\begin{array}{lr}
1 \times 8=8 & 6 \times 8=48 \\
2 \times 8=16 & 7 \times 8=56 \\
3 \times 8=24 & 8 \times 8=64 \\
4 \times 8=32 & 9 \times 8=72 \\
5 \times 8=40 & 10 \times 8=80
\end{array}
$$

MULTIPLICATION FACTS - x8

$$
\begin{aligned}
& 1 \times 8=8 \\
& 3 \times 8=24 \\
& 6 \times 8=48 \\
& 10 \times 8=80 \\
& 7 \times 8=56 \\
& 8 \times 8=64 \\
& 2 \times 8=16 \\
& 5 \times 8=40 \\
& 9 \times 8=72 \\
& 4 \times 8=32 \\
& 18 \times 8=144 \\
& 5 \times 80=400 \\
& 60 \times 80=4,800 \\
& 385 \times 8=3,080 \\
& 66 \times 38=2,508 \\
& 139<8=1,112
\end{aligned}
$$

SKIP COUNTING BY 8s

Let's skip count backwards by 8s, starting from 80.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

FACT FAMILIES

$5 * 8=40$

FACT FAMILIES

$7 * 8=56$

VERTICAL ADDITION WITH RENAMING

Write the following questions on your whiteboard vertically and solve. Make sure you say the algorithm softly to yourself while you work.
a) $\quad \begin{aligned} & 11 \\ & 575\end{aligned}$
11
21 $+687+3.89$ 1262 8.52 2509

SUBTRACTION ACROSS ZERO

Write the following questions on your whiteboard vertically and solve.
Make sure you say the algorithm softly to yourself while you work.

2911

4913

710
a) 301
b) 508
c) 82.9
$\begin{array}{r}-55.7 \\ \hline 25.2\end{array}$
611915
167
-134
$\begin{array}{r}-327 \\ \hline 176\end{array}$
d) 72.05
$\begin{array}{r}-45.68 \\ \hline 26.37\end{array}$

MULTIPLICATION - AREA MODEL

Solve these questions using the area model.

SHORT DIVISION

Solve the following problems using short division.
a) $4396 \div 3$

$$
3 \longdiv { 4 ^ { 1 } 3 ^ { 1 } 9 ^ { 1 } 6 }
$$

c) $49624 \div 7$

7089 r 1
$7 \longdiv { 4 9 6 2 ^ { 6 } 4 }$
b) $573 \div 6$

95 r 3
$6 \longdiv { 5 7 ^ { 3 } 3 }$
d) $758476 \div 37$

20499 r 13
$3 7 \longdiv { 7 5 ^ { 1 } 8 ^ { 1 8 } 4 ^ { 3 6 } 7 ^ { 3 4 } 6 }$

MIXED NUMBERS \rightarrow IMPROPER FRACTIONS

Convert the following mixed numbers into improper fractions.
a)
$4 \frac{1}{3}=\frac{13}{3}$
d) $7 \frac{5}{9}=\frac{68}{9}$
b) $6 \frac{1}{2}=\frac{13}{2} \quad$ e) $13 \frac{7}{12}=\frac{163}{12}$
c) $8 \frac{2}{3}=\frac{26}{3}$
f) $243 \frac{13}{27}=\frac{6574}{27}$

PRIME FACTORISATION

Create factor trees and determine the prime factors of the following numbers.

PERIMETER

Perimeter is the total distance around a 2D shape.
Square: $P=L+L+L+L \quad$ Rectangle: $P=L+L+W+W$
Irregular: $\mathrm{P}=$ total of all sides
a)

$$
\begin{aligned}
& P=L+L+W+W \\
& P=6+6+2+2 \\
& P=16 m
\end{aligned}
$$

b)

$$
\begin{aligned}
& P=4.8+4.8+4.8+4.8 \\
& P=19.2 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& P=4+4+4+4+7+7+7+7 \\
& +7+7+7+7 \\
& P=72 m
\end{aligned}
$$

AREA

Area is the total space inside a 2D shape.
Square: $A=L x L \quad$ Rectangle: $A=L \times W$
a)

$$
\begin{aligned}
& A=L \times L \\
& A=8 \times 8 \\
& A=64 \mathrm{~cm}^{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
& A=L \times W \\
& A=9 \times 5 \\
& A=45 \mathrm{~mm}^{2}
\end{aligned}
$$

c)

$$
23 \mathrm{~m}
$$

$$
\begin{aligned}
& A=L \times W \\
& A=6 \times 23 \\
& A=138 \mathrm{~m}^{\mathbf{2}}
\end{aligned}
$$

6 m

$$
A=106 \mathrm{~cm}^{2}
$$

d)
10 cm

Friday Maths Quiz


```
1a 1b 1c 1d 1e 1f 1g 1h 1i 1j 1k 1l
2a 2b 2c 2d 2e 2f 2g 2h 2i 2j
3a 3b 3c 3d 3e 3f 3g 3h
\square\square\square\square\square\square\square\square\square
4 5
```


Friday Maths Quiz

RESOURCES

- Booker, Bond, Sparrow \& Swan

Teaching Primary Mathematics

- Stephen Norton videos and PDF:

Teaching And Learning Fundamental Mathematics

- Maths Model Drawing Made Easy and Inspiring

Q\&A

PROBABILITY - INDEPENDENT EVENTS Th
Write the answer to these questions on your whiteboard.
a) Rolling a number less than 6 with a 6 -sided die.
b) Rolling a number greater than 7 with a 10 -sided die. $\frac{5}{6}$
c) Selecting the Ace of Hearts from a deck of cards.
d) Rolling a 7 with a 6 -sided die.
d) Getting green or orange on this spinner.

A square number is the product of a number multiplied by itself. When presented as an array, a square number makes a square shape.

49 is a square number.
It is the result of 7 multiplied by itself.

a) $4396 \div 3$
$3 \longdiv { 4 ^ { 1 } { } ^ { 1 } 3 ^ { 1 } 9 ^ { 1 } 6 }$
b) $573 \div 6$

c) $49624 \div 7$
d) $758476 \div 37$
$7 \longdiv { 4 9 6 2 6 4 }$ $3 7 \longdiv { 7 5 ^ { 1 } 8 ^ { 1 8 } 4 ^ { 3 5 } 7 ^ { 3 9 } 6 }$

Twitter: @DaveMorkunas

